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ABSTRACT. The “evidence” procedure for setting hyperparameters is essentially the same as the
techniques of ML-II and generalized maximum likelihood. Unlike those older techniques however, the
evidence procedure has been justified (and used) as an approximation to the hierarchical Bayesian
calculation. We use several examples to explore the validity of this justification. Then we derive
upper and (often large) lower bounds on the difference between the evidence procedure’s answer
and the hierarchical Bayesian answer, for many different quantities. We prescribe a simple, easy
to compute, test that can check the validity of the approximation after the fact. We also touch on
subjects like the close relationship between the evidence procedure and maximum likelihood, and
the self-consistency of deriving priors by “first-principles” arguments that don’t set the values of
hyperparameters.

“.. any Inference must be based on strict adherence to the laws of probability theory, because any

deviation automatically leads to inconsistency.” - S. Gull, in [5]

“(Some have) estimated alpha from the data and then proceeded as if alpha is known. It is better
to use the standard methods of Bayesian statistics and integrate out alpha.” - B. D. Ripley, in [13]

1. Introduction

In many statistics problems one has one or more “hyperparameters” (sometimes called
“nuisance parameters”) which occur in the distributions of interest but may not be of
direct interest themselves. Examples are a choice of model, a noise level, a regularization
constant in a regression problem, and “a” in maxent image reconstruction.

How to deal with a hyperparameter? A full Bayesian approach is to marginalize out the
hyperparameter. (This is “hierarchical Bayes” - see [1, 3].) A non-Bayesian approach might
set the hyperparameter to a single value, and use that value throughout the subsequent
analysis. For example, one might choose the hyperparameter via maximum likelihood -
choose the hyperparameter v such that the conditional probability P(D | v) (or alterna-
tively P(v | D)) is maximized, where D is one’s data. Recently it has been claimed that
this kind of non-Bayesian approach is a good approximation to the full Bayesian approach
whenever P(7y | D) is peaked as a function of v [9, 11]. In the context of this claim, setting
v to the value maximizing P(7 | D) is known as “the evidence procedure” [9, 11, 12, 14].
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Even though the evidence procedure has become popular amongst some Bayesians,
the validity of its claim to approximate the Bayesian approach has never been thoroughly
discussed. Consequently the accuracy of the procedure as such an approximation is rarely
checked or reported. Perhaps even more remarkably, for some applications the full Bayesian
answer is easier to calculate and apply [16, 20, 3]. Yet many researchers jump straight to the
approximation of the evidence procedure, without checking if the exact answer is tractable,
or if not, if perhaps some approximation other than the evidence procedure is preferable.

In the first part of this paper we state the evidence procedure, giving both an intuitive
argument that it is a good approximation and an intuitive argument that it is not. We then
explore the validity of the procedure in a simple Gaussians example. In this example the
procedure fails miserably for certain objects of interest, but works for others. We end with a
formal discussion giving lower and upper bounds on the approximation error incurred with
the evidence procedure. The bounds concern error in evaluating the posterior at a point, in
evaluating the full posterior (both supremum norm and L™ norm error), in estimating the
predictive distribution, and in estimating expectation values. This discussion demonstrates
explicitly that the informal justifications for the evidence procedure found in the literature
are inadequate. It also has implications for the self-consistency of any “first-principles”
argument for a prior that does not fix all hyperparameters in that prior.

A recurring theme throughout the paper is that for many quantities of interest, the evi-
dence procedure becomes more accurate as the object of interest becomes more dominated
by the likelihood distribution. In other words, for those quantities the procedure is most
accurate when the prior is irrelevant, so that there is no need for Bayesian analysis.

We emphasize that here we only analyze how well the evidence procedure approximates
the full Bayesian answer. We are not concerned with whether the procedure meets non-
Bayesian desiderata. (E.g., desiderata like requiring that one’s answer doesn’t change when
additional irrelevant information is introduced, or like the desiderata in Section 6.5 of [11]
that actually argue for the use of maximum likelihood in all contexts, not just those related
to hyperparameters.) Nor do we make any claims concerning how one should use the
posterior (e.g., take its mean vs. take its mode), an issue properly addressed by decision
theory. Moreover, we make no claims about how well the procedure works in practice.
(A procedure’s being non-Bayesian does not mean it works poorly in practice.) Studies
empirically comparing the evidence procedure to other methods for setting hyperparameters
have given mixed results [7, 8, 13, 14, 16, 17, 18, 19, 20]. However in evidence’s defense
we note that MacKay has recently won a prediction competition [12] by using the evidence
procedure, albeit in conjunction with some new techniques like stacking [2] and the use of
different regularization hyperparameters for different parts of the space.

2. What is the evidence procedure?

To illustrate the evidence procedure, consider the case where the hyperparameter param-
eterizes the prior distribution over the hypothesis space of vectors f. (To distinguish it
from the generic hyperparameter -, this kind of hyperparameter is indicated by a.) Some
examples are the MaxEnt and Gaussian distributions: P(f | a) = exp(aS(f))/Zs(a), and

o2
P(fla) x aN/2 g=o|f | , respectively.
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Write the posterior distribution as

P(JID) = 5 [ Pla,f.D) da. (1)

)
Multiply and divide the integrand in (1) by P(a | D):

P(f| D) / Pa SD) o | DY da /P(f|a,D)P(a|D)da. 2)

When P(a | D) is sharply peaked about a., it’s natural to treat it as a delta function
about a., and collapse the last integral in (2). The idea of collapsing Bayesian integrals
this way is old, going back at least as far as [6]. It forms the conventional justification for
the view that the evidence procedure is an approximation to the full Bayesian approach;
the evidence procedure says that

P(fID) = P(f|ae,D) < P(f|ac) P(D]f). (3)

Under many circumstances (e.g., relatively flat P(a)) this kind of reasoning also appears
to support the idea of setting P(f | D) to P(f | D, argmax,P(D | a)), so long as P(D | a)
is a peaked function of a. (In fact, this kind of reasoning appears to support setting a to
the maximum of almost any distribution over o and D that is a peaked function of a.) So
there is ambiguity in what peak we should set a to, i.e., in how to define a., (ambiguity
that is reflected in the literature). Accordingly, when it’s helpful for illustrative purposes,
we will consider P(D | ) rather than P(a | D) and will take the term “evidence” to mean
P(D | a) rather than (our default meaning) P(a | D).

Stripped of the context of equation (3), the idea of setting the hyperparameter to the
value a., is essentially identical to the techniques of ML-II and generalized maximum
likelihood [4, 1, 19]. The primary difference between the evidence procedure and those
older techniques is that those older techniques do not attempt to justify themselves with
the approximation in equation (3), but rather view setting a = ., as a priori reasonable.

As it turns out, there are reasons to doubt the validity of equation (3). One such
reason is that in general the change of variables a@ = n(a’) results in the evidence procedure
returning P(f | a, D) for an a different from a.,. That is, the Jacobian of the variable
transformation can change the distribution’s mode while still leaving it peaked. In general
there will be functions 7 for which P(a’ | D) is highly peaked about an o’ which does
not equal n71(a.,). For such an 7 the evidence procedure used with the hyperparameter
variable o/ returns a posterior distribution for f given by P(f | al,, D) where al, # a.,.
[22] So the answer of the evidence procedure can change under a variable transformation of
the hyperparameter, whereas the true posterior can not (cf. equation (1)). This suggests
that the reasoning embodied in equations (1) through (3) must be flawed. More is needed
than simply having a distribution over a and D that is a sharply peaked function of a.

Another reason to doubt the accuracy of the approximation in (3) arises from considering
the evidence procedure from a graphical perspective. The contour plots in figure 1 show two
hypothetical P(a, f | D)’s, for one-dimensional f. The projections of these distributions
onto the o and f axes are P(a | D) and P(f | D), respectively. In both plots P(a | D)
is peaked, about @ = a,,. The evidence procedure’s posterior distribution is given by the
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Figure 1: Contour sketches of hypothetical P(«, f | D)’s along with their projections onto
the a and f axes. The bottom plots are (proportional to) slices of the distributions through
@ = Qgy. The left sketch is a success of the evidence procedure, and the right a failure. The
right sketch is similar to what one would get for the Gaussian scenario discussed below.

slice of the original distribution through a = a.,. In the left plot that slice resembles the
true posterior projection. But in the right plot it does not. Again we see that P(a | D)’s
being peaked cannot be the sole criterion for the validity of the evidence approximation.

These problems are partially due to the fact that P(a | D) appeared in the integrand
in (2) only after we multiplied and divided by it. So no matter how peaked the numerator
P(a | D), it is exactly canceled by the denominator P(a | D). This suggests that the
function P(f | a, D) appearing in equation (2) is just as rapidly varying a function of a as
P(a | D), in which case collapsing the integral at a., is unjustified.

Note though that if the a-peak of P(a, f, D) is close to a.,, there might be a fortuitous
cancellation of peaks that renders P(f | a, D) a slowly varying function of a. (See equation
(2).) While it is usually difficult to check whether precise cancellation occurs, at a minimum
the peaks must overlap substantially for such cancellation to be possible. (This is proven
formally in Section 5.) When there is such overlap it’s possible that the evidence procedure
closely approximates the Bayesian answer. Ironically, whereas the intuition behind equation
(3) suggests that the procedure works better for more highly peaked P(a | D), the need
for that narrow peak to overlap with the peak of P(a, f, D) suggests that the opposite is
true. (Theorem 4 below proves that that “opposite” is indeed true; the evidence procedure
fails for almost all f in the regime of sufficiently peaked P(a | D).)

The previous observation offers a simple test that can be applied to one’s result to check
the evidence procedure. If the a-peak of P(f,a, D) does not overlap with the a-peak of
the evidence then collapsing the integral in equation 2 to the sharp peak of the evidence is
unjustified. To illustrate this we consider Gull’s famous Susie reconstruction [9]. Figure 2
plots P(a | D) and P(f,a, D) as functions of a for the f (i.e., the image) at the peak of
the evidence procedure’s posterior in Gull’s Susie reconstruction. The two peaks clearly do
not cancel, which means the argument leading to the evidence procedure does not hold.
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Figure 2: A comparison of P(a | D) and P(e, f, D) as functions of a shows they do not
overlap. The data is taken from Gull’s Susie reconstruction: f here is the MAP of the
evidence procedure posterior f presented in Gull’s article (see text).

It turns out that even when peaks cancel and P(a | D) is highly peaked, we still can’t
conclude that equation (3) is necessarily a good approximation. This is because P(f | o, D)
need not be normalized over a, so the contribution to the integral from the (often very long)
tails of the integrand in equation (2) can be as sizable as the contribution from around a.,.

As a final example of the subtleties involved in equation (3) note that with enough
hyperparameters the evidence procedure can produce a posterior that is highly peaked
about the maximum likelihood f. (Nothing in the intuition behind equation (3) presumes
a is low-dimensional. Indeed, some researchers have used the evidence procedure with high-
dimensional «.) This follows from the equality P(D | @) = [dfP(D | f)P(f | @). This
equality shows that for a sufficiently high-dimensional & (i.e., sufficiently flexible P(f | a)),
to find the @ maximizing P(D | @) one simply finds the a for which P(f | @) is highly
peaked about the maximum likelihood f (i.e., about the mode of P(D | f)). Consequently,
for that a, P(f | D,a) is also highly peaked about the maximum likelihood f.

3. The Gaussian distributions case

In this section we will focus on a particular example in which both the likelihood and the
conditional prior distribution are Gaussians. For simplicity the likelihood does not involve
convolutions. The prior is centered on the origin and the likelihood is centered at a point
D all of whose components have equal magnitude d. (These restrictions entail no loss of
generality due to the translational and rotational invariance of Gaussians). Accordingly,
with N the dimension of f, the likelihood and (conditional) prior are given by

P(D|f) « pN2 e oIF - D|27 and P(f | ) x oM/? |7 I ()

To agree with common usage, we will take the prior over a to equal 1/a from a,,;, to
Qay and zero elsewhere. We will be interested in the common case where a,,;, is very close
to zero. Since our analysis won’t depend on the exact value of a,,;, (the primary effect of
that value is to set the overall normalization), here we will set it equal to 0. Also, for this
section, we will treat a., as though it equaled argmax,P(D | a). It is straightforward to
redo the analysis under different restrictions.

Evaluating [ daP(f,a) gives P(f) in terms of the incomplete gamma function:

P(f) o i T((V/2), oumaslf )

~ W when amax|f |* > N/2.
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Note that for f away from the origin, the prior falls off as a reciprocal power of distance
from the origin; even though P(f | @) is Gaussian P(f) is not. (See Theorem 1 below for a
proof of the generality of this phenomenon.) Since the true posterior is proportional to the
product of the prior with the likelihood, it too is non-Gaussian. However the evidence pro-
cedure’s posterior is Gaussian, so the two posteriors must differ. To calculate the difference
we must find the evidence procedure’s posterior, and to do that we must first evaluate

N
P(D|a) = /dfP(f,D|a) x [,/aafﬁe—%f] . (6)

We can solve for the peak of this distribution, ag,:

p
ey = 1 (7)

So the evidence procedure’s posterior is a Gaussian centered between the peaks of the
prior and likelihood (i.e., between f =0 and f = d):

P(f| D, au) x (aeB)N? el = DP-aclf o o=(Braed)|f - =50 (8)

Note that d is the distance along any coordinate separating the peaks of the prior and
the likelihood. Therefore 23d? is the separation between the peaks measured in units of
the likelihood’s width. But equation (7) only has a meaningful solution if 23d? > 1; unless
the peaks are separated by more than the width of likelihood, there isn’t a peak in the
evidence. In this sense the evidence procedure is not even well-defined unless the data
are unexpected. (We use the term “unexpected” a bit loosely here; more formally - and
laboriously - one could analyze how “unexpected” the data are by considering the width
of the prior predictive distribution rather than the width of the likelihood.) Moreover,
as the separation increases beyond two widths, so that 23d* > 2, the value a., becomes
smaller than (. Yet as a., shrinks below 3 the evidence procedure’s approximation to the
posterior approaches the likelihood distribution. So as we pass the condition allowing the
evidence procedure to be well-defined, the data become more unexpected, and the evidence
procedure produces a posterior which increasingly approximates the likelihood.

We can apply the test from Section 2. The a-width of P(f, a, D) can be estimated from

4a]oint

its curvature at the peak as Aajyint ~ , where ;¢ is the peak position. Appyling

the test at the peak value of f from the evidence procedure’s posterior we discover, sur-
prisingly, that the peaks, a;qns and ag,, only lie within the half width, %

other when a., < j—% That is, in general, the a-peaks of the joint probability distribution

, of each

and the evidence procedure won’t overlap as required for the evidence procedure’s approx-
imation to be justified. Moreover, when they do overlap, the posterior is solidly in the
likelihood dominated regime (for large N ). Section 5 discusses the overlap criteria formally.

These and related effects are illustrated in figure 3. Since the evidence approximated
posterior is a symmetric Gaussian it is fully characterized by any single one-dimensional
slice through its peak. This is not the case with the true posterior unfortunately, since that
posterior is not symmetric about its peak. Nonetheless, we can learn a lot about the true
posterior by looking at a slice through it going from the origin out along the D direction in
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Figure 3: Solid line: True posterior, P(f | D); Dot-Dash: Evidence procedure’s posterior
P(f | aey,D); Dashed: Likelihood P(D | f). Going from figure (a) through (c), there is
increasing distance (i.e., increasing 23D?%) between the peaks of the prior and the likelihood.
For 23d* < 1,a,, is undefined. Figure (d) increases the dimension from N = 1 to N = 10;
the mismatch between the distributions becomes worse. (@0, = 100,d =2 )

J space. Figure 3 shows this slice and the corresponding slice of the evidence procedure’s
posterior for various separations, i.e., various values of 23d?. The likelihood is also shown.
The plots for other slice directions exhibit similar behavior.

These plots show that the evidence and true posteriors have different symmetries, peak
positions and widths. Moreover the true posterior can have two peaks whereas the evidence
procedure’s posterior only has one, and the true posterior tends to have (sometimes much)
more of its probability “mass” near the origin. Also note that the neither the peak position
nor peak widths of the two distributions approach one another until the distributions start to
converge on the likelihood - at which point the true posterior is about as well approximated
by the likelihood as it is by the evidence procedure’s posterior.

For large enough a4, and a,,;,, close to 0, as N increases the peaks of the true posterior
and of the evidence procedure’s posterior don’t move, nor does the position of the peak
of the evidence move. But all those distributions—and in particular the plots in figure
3—become sharper (cf. equations (4, 5, and 8), and compare figures 3b and 3d). (Due to
this sharpening of peaks the plots for high N values aren’t very informative; this is why the
plots are for low N values even though the evidence isn’t very peaked for low N values.) So
as N increase, the evidence becomes more peaked. But at the same time the discrepancy
between the true posterior and the evidence procedure’s posterior gets worse, not better.

Given all this, it seems fair to say that the evidence procedure’s posterior is a poor rep-
resentation of the true posterior—except for in the case when the prior doesn’t matter (i.e.,
when things are likelihood dominated). Nonetheless, in some circumstances, the evidence
procedure’s posterior could provide a good approximation for calculating low-dimensional
expectation values. This will occur if erroneous behavior in the tails of the distribution
“compensates” for erroneous behavior in the central regions. (See Section 4 below.)

Finally, we point out that it is a simple matter to calculate the true prior (and therefore
the posterior) not only when the conditioned prior is Gaussian, but also when it is entropic
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(see equation (5) and [16]). Moreover, for both scenarios one can often directly approximate
the exact posterior with a convenient form. Equation (5) presents an example of this
for the Gaussian prior case, and for the entropic prior such a direct approximation is
P(f) ~ 1/8(f)N/?, where S is the entropy (see [16]). Nonetheless, one can not rule out
the possibility that there might be cases where the evidence procedure’s functional form
for the posterior is more convenient than “direct approximations” for the posterior. On the
other hand of course, unlike the exact calculation’s form for the posterior, generating the
evidence procedure’s form entails recalculating a., for each new data set.

4. Using evidence for things other than the posterior

Interestingly enough, all this doesn’t mean that the evidence procedure is useless. This
is because even though it gets the posterior wrong, when certain conditions are met the
evidence procedure’s approximation for low-dimensional expectation values can be excellent.

As an example, consider the posterior expected value of a function ¢(f): (g9) =
Jdo [df g(f) P(f,a | D). Suppose that ¢ is a simple function of a single coordinate f;,
and that P(f, D | @) factors as IIY_, P(fx, Di | @) (as it does in our Gaussians example).
Then by equation (2),

)= [ da [ arats) S b ),

Cancelling terms between the numerator P(f,a | D) and the denominator P(a | D) =
JdfP(f,a| D) (recall the assumption that P(f, D | a) factors), we see that

9)= [ " daP(a| D)R() (9)

min

dfjg(£5)P(f;,Djle
where R(a) = ffjf(]P)(f](,Djla) e [ dfig(f;)P(fi | Dj, ).

Equations (9) and (2) have the same form, except that in equation (9) the ratio occurring
in the integrand (R(a)) only involves one-dimensional quantities. As a result, often equation
(9) does not give us the same difficulty that equation (2) did; since in equation (9) the
denominator of the ratio is a one-dimensional integral, it is often not strongly peaked, so to
have the ratio be smooth on the scale of the peak of the evidence does not require that the
numerator of that ratio be strongly peaked, as it did in equation (2). So as long as: @az
is not too large (so that the tails don’t contribute much); R(a) is not a rapidly varying
function (a condition often met for simple expectation values like the mean); and P(a | D)
is a highly peaked function of a (cf. equation (6)); then calculating the expected g by
collapsing the integral over o down to the peak of P(a | D) might be justified.

R(a) and P(a | D) for the Gaussians case are sketched in figure 4 for g(f) = f (so
(g) is the posterior average f). To highlight the important aspects of the plot, P(a) is
flat between 0 and a4, rather than Jeffreys. These plots show that slowly-varying R(a)
and peaked P(a | D) are not uncommon, provided one has appropriate choices of 4z
and the like. (Note that this is not the behavior of all the plots however.) So in some
circumstances the evidence procedure can accurately estimate low-dimensional expectation
values even if it poorly approximates the (high-dimensional) posterior distribution. To help
understand this in light of the preceding discussion, note that P(a | D) is usually only




WHAT BAYES HAS TO SAY ABOUT THE EVIDENCE PROCEDURE 9

G-

Li kel_' hood Evidence with increasing separation
Dominated of the likelihood and prior peaks:

Regime O O P(a|D) for Bd?/N = 0.07 N=16
L .=+ P(a[D) for Bd?/N = 0.09 N=16
- P(a[D) for Bd®/N = 6.25 N=16

.
---------

s

10° 10° 10" 10

5

Figure 4: R(a) makes a smooth transition from the prior-dominated to the likelihood-
dominated regime. It is weighted by P(a | D) in the integral giving (g). The long tails of
P(a | D) can outweigh the peak of P(a | D) in the integral, particularly when that peak
lies beyond the crossover point from the likelihood-dominated regime.

highly peaked on the likelihood-dominated side of the midpoint in R(«). And of course in
the likelihood-dominated regime we are free to introduce some error into the prior.

Of course, all of this depends on the tails in figure 4 being relatively unimportant, which
usually holds only if a4, is not too large. For example, in the Gaussians case, for large
enough ., the tails of P(a | D) will provide more weight in the integral over a than
the peak does. (Note the logarithmic scale of the a/§-axis that “compresses” the tails.) In
such a situation, we are not justified in “collapsing the integral down to the peak”, and the
evidence’s procedure’s approximation for the expectation value is poor.

Unfortunately though, there is a lot of confusion about how to choose @y, 4,. In partic-
ular, while a large a4, does indeed result in a less informative P(a), it results in a more
informative P(f). This is because the larger o, is, the narrower P( f) becomes. (Similar
“conjugate” behavior in a different context has been discussed by Jaynes [10].) This is
a special example of the following more general rule: if one knows the physical meaning
of a hyperparameter, then one can set the prior over it directly, without concern for how
that prior affects P(f). However if the hyperparameter has no physical meaning, and if
one sets the prior over it without taking into account how that prior affects P(f), then
one is introducing (usually fictitious) prior “knowledge” concerning the ultimate object of
interest, f. This problem is particularly pronounced if P(f | @) is somewhat ad hoc, like
in the case of neural nets, where f is an input-output mapping, and P(a) only sets P(f)
indirectly, by means of an intermediate distribution over “weight vectors” [21].

There are many other quantities of interest in addition to the posterior and its low-
dimensional marginalizations. Two such quantities are the posterior over a single coor-
dinate (i.e., P(f; | D)) and the predictive distribution for new data given old data (i.e.,
P(new data set = D' | D)). Since the posterior over a single coordinate is a low-dimensional
marginalization of the full posterior, we expect the evidence procedure to estimate it accu-
rately when it estimates other low-dimensional marginalizations well. On the other hand,
the predictive distribution is a high-dimensional object, and therefore we expect the evi-
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dence procedure to estimate it as poorly as it does the full posterior.

Yet another quantity of interest is the mode of the posterior, the “MAP” f. Since the
MAP fis not a low-dimensional marginalization of the posterior, one would not expect the
evidence procedure to approximate it well unless things are likelihood dominated. This is
the case with Gaussians for example - see figure 3.

Despite this though, applications of the evidence procedure frequently concentrate on
the f-mode of P(f | ey, D). This isn’t as unreasonable as it might seem if P(f | oy, D)
is symmetric and unimodal, since for such a distribution the mode equals the mean. So
when the evidence procedure’s posterior is symmetric and unimodal, finding the mode of
that posterior provides an accurate estimate of the true posterior’s mean (if it so happens
that the mean of the evidence procedure’s posterior is a good approximation of the true
posterior’s mean - cf. equation (9)). We speculate that this is the origin of the cryptic
claim that the evidence procedure estimates “where most of the mass is” correctly.

So in these symmetric and unimodal circumstances it is indeed sensible to concentrate
on the mode of the evidence procedure’s posterior. However when the evidence procedure’s
posterior is either asymmetric or multimodal, the peak of the procedure’s posterior does
not equal its mean. For such cases the mode of the procedure’s posterior has no special
significance, and there is no reason to concentrate on that mode. In particular, this problem
affects use of the evidence procedure with the entropic prior, and with (highly multi-modal)
neural nets. Ironically, these are two situations in which it happens to be particularly
common for researchers to concentrate on modes of the evidence procedure’s posterior.

As a final example of a quantity of interest, note that in many applications one is more
concerned with unusual events than with likely events. (For example, a battleship’s captain
might not be interested in a “typical” reconstruction of a radar-image, but rather in the
probability that that image was created by an approaching periscope.) In such a case
we are interested in the behavior in the tails of the probability distribution. However in
general there is no reason to believe that the evidence procedure approximates such tails
well. In particular, in the Gaussians example the ratio of the true posterior to the evidence
procedure’s posterior goes to infinity in the tails of f (cf. equations (5, 8)). In the final
analysis, whether or not a particular use of the evidence procedure is sound depends on
what one wants to know (which in turn is determined by one’s loss function).

5. Formal bounds on evidence’s error

This section presents a formal analysis of upper and lower bounds on the error incurred
by using the evidence procedure. (Some of these results correct deficiencies in the results
reported in [20].) In most of this analysis we will not restrict attention to hyperparameters
which occur in the conditional prior, so we denote hyperparameters by v rather than a.
Also, although most of this analysis goes through essentially unchanged when v is multi-
dimensional, for simplicity only the one-dimensional v case is presented here.

This section is organized as follows. First it is proven that P(f) can not be of the form
P(f | v = k) for some constant x (i.e., marginalizing out a hyperparameter can never be
equivalent to setting it to some particular value). It is argued that this means that “first-
principles” arguments for a prior which don’t set the value of the hyperparameter are not
self-consistent. It also means that the evidence procedure will always have some error.

Next the reasoning of Section 2 is formalized to derive an upper bound on the error of
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the evidence procedure. Like many of the other results presented in this section, this upper
bound applies to a wide variety of possible uses of the evidence procedure.

Then it is shown that the separation between the y-peaks of P(f,v | D) and P(vy | D)
must be small or the evidence procedure’s error will be large (cf. the discussion of “fortuitous
cancellation of peaks” near the end of Section 2). This is done by both showing that the
upper bound on the error increases with that separation, and then by deriving a lower
bound on the error which increases with that separation. So by measuring the separation
one can test the evidence procedure. In addition, the lower bound can be used to show that
when P(7 | D) is highly peaked—exactly the situation which traditionally was thought to
justify the evidence procedure—the evidence procedure can give an accurate estimate of
the entire posterior P(f | D) only if that posterior is likelihood-dominated. Finally, we
discuss how well the evidence procedure performs when one uses error measures like the
L™ difference between the correct posterior and the evidence procedure’s guess for that
posterior.

5.1. The evidence procedure never gets the posterior right

We start with a proof that for a broad class of P(f | v)’s, there is no non-pathological
scenario for which the evidence procedure’s approximation to P(f) is correct:
Theorem 1: Assume that for those 5 for which it does not equal zero, P(f | v) o e "V
for some function U(.). Then the only way that one can have P(f) o e~*U{f)
constant x is if P(vy) =0 for all v # k.

for some

Proof: Our proposed equality is e "V = [dyT(v) x eV, where the integration limits
are implicitly restricted to the region where P(f | v) # 0, and where T(y) = P(y) X
[dfe="U )/ [dfe=V(1), (Note that for both P(f) and P(f | 7) to be properly defined,
both integrals in the definition of T(.) must be greater than zero and finite.) We must find
a k and T'() such that this equality holds for all realizable values of U. Let u be such a
realizable value of U. Take the derivative with respect to U of both sides of the proposed
equality ¢ times, and evaluate for U = u. The result is k' = [ dv(7)' X R(~) for any integer
t >0, where R(y) = T(v) x e*=). Therefore [ dy(y — k)? x R(7)) = 0. Since both R(7)
and (v — k)? are nowhere negative, this means that for all v for which (v — k)? # 0, R(v)
must equal zero. Therefore P(7) must equal zero for all v # k. QED.

Theorem 1 has two important consequences. First, consider any “first principles” ar-
gument which says that the prior over f is proportional to K (f)e~ V() for some U(.) and
K(.) but does not fix v. Our ignorance concerning v implies a non-delta function distri-
bution P(7). By Theorem 1, such a distribution ensures that P(f) is not proportional to
K(f)e_”U(f) for some k. So in a certain sense, such a “first-principles” argument for a prior
is not self-consistent. In particular, the first principles arguments which have been offered
in favor of the so-called “entropic prior” but which do not fix v (e.g., (Skilling 1989)) suffer
from this problem. As another example, with U(f) = —log[V(f)], Theorem 1 implies that
a Dirichlet prior with an unspecified exponent (i.e., a non-delta function P(7)) is not a
Dirichlet prior. (A similar point is made in [10].)

Second, if the likelihood is nowhere-zero, Theorem 1 says that there is a non-zero lower
bound on the error of using evidence to set the posterior. The only question is how low the



12 D. H. Wolpert and C. E. M. Strauss

bound is. To address this make the definition P(f | D) = P(D | f)[Pe(f)+ Er(f)] / P(D),
where “Pg(f)” means the evidence procedure’s approximation to P(f). So if P(D) ~
Pg(D), the error in the evidence procedure’s estimate for the posterior equals P(D | f) x
Er(f)/P(D). Therefore we can have arbitrarily large Er(f) for a particular f and not
introduce sizable error into the posterior of that f, but only if the likelihood is small for
that f. As D varies, the set of those f whose likelihood is not small varies. And as such a
set of f varies, the v (if there is one) such that for those f P(f | v)is a good approximation
to P(f) varies. When it works, the v(D) returned by the evidence procedure reflects this
changing of v with D.

5.2. Upper bounds on evidence’s error

In general though, one needn’t use the evidence procedure to estimate a posterior, but
might instead use it for other purposes (see Section 4). To circumvent the issue of how
the posterior gets used, we will examine the evidence procedure’s error as an estimator of
an expectation value [df'A(f") x P(f' | D), where f’ is a dummy f variable, and A(.)
is determined by the use we have in mind for the posterior. For example, A(f') = f' if
we're interested in the posterior average f. If we're interested in the posterior directly, then
A(f") = A(f, ") = 6(f = f'), and expected A is a function of f as well as f'. As a final
example, if we're interested in the predictive distribution, then A(f’") = P(new data set =
D"| f"), and A is a function of D’ as well as f'.

To analyze such expectation values, let expressions of the form “E¢(A ... stuff)” mean
Jdf'A(f") x P(f" ... stuff), where “stuff” can involve f’, conditional bars, or whatever; E
expectation values are over f alone. So for example Ef(A | D) = [df'A(f")xP(f"| D), and
Ef(A,v| D) = [df'A(f") x P(f',v | D). (This is slightly non-standard use of the “E(.)”
notation.) Also, take expressions like “P(7*44, ...)” to be shorthand for “P(y = v*+4,...)".

The intuition for when the evidence procedure works for expectation values is analogous
to the intuition for posteriors; the posteriors intuition is based on equation (2), and the
expectation values intuition is based on the very similar equation

B4 D) = [ P82 b6 ) x [ Al DPGID). (0)

Just like equation (3), equation (10) suggests (!) that if P(y | D) is sharply peaked
about 7* and E¢(A |, D) is slowly varying, then E¢(A| D) ~ E¢(A|~* D).

We now present several theorems which formalize this intuitive reasoning. These theo-
rems give upper and lower bounds on the error induced by using the evidence procedure. In
these theorems we never need to specify A(.). In addition, we don’t need to assume anything
special about the probability distributions, e.g., that they’re linear Gaussian models.

We will consider three properties:

1) How sharp the y-peak of P(y | D) is.
2) How much Ef(A|v,D) = E¢(A,v|D)/P(v| D) varies around that peak of P(v | D).

(This provides the scale for measuring the peakedness of P(v | D).)

3) How E¢(A,v | D) behaves for v significantly far from that peak of P(y | D).

(This - not peakedness of P(y | D) - determines if we are justified in ignoring the tails
in our integrals.)

Formally, first choose a v* and a § > 0. In practice these will usually serve as the
peak position and peak width of P(vy | D) respectively, and we will loosely refer to them as
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such. (Note though that we make no such stipulations in their definitions, and the theorems
presented below don’t rely on their serving those functions.)
Our first two definitions characterize the “peakedness” of P( | D); the smaller A and/or

p, the more “pead'(ed’7 the d61|sr‘)5ribution.
_ P(y*+8)|D) P(y*— .
A = max [SEipe, S

We will say “condition (i) holds” if A is small. It is usually assumed that A < 1.

p=1- [ dyP(y| D);
We will say “condition (i’) holds” if p is small.
Our next definition characterizes how slowly varying E¢(A | v, D) is across the peak;
the smaller 7, the more slowly varying F¢(A | v, D) is across [v* — 6,7 + 6].
T=max |Ey(A|y,D)— Ef(A|~* D)| across v € [v* — 6,7* + 6];
We will say “condition (ii) holds” if 7 is small.
Our next two definitions characterize how much tails over v matter; the smaller € and/or
B, the less those tail*s matter.
€= |Ef(A| D)~ [177 dyEi(A, 7| D);
€ is the contribution to E¢(A | D) arising from F¢(A,v | D) lying outside [y*—6,v* +6].
We will say “condition (iii) holds” if € is small.

B = max |Ef(A|v,D)| across v ¢ [v* — 6,7 + 6];

B measures how big F¢(A | v, D) can get when 7 is outside of [y* — 8,7* + 6];

We will say “condition (iv) holds” if B is not too large.

“Evidence’s error” is the magnitude of the difference between the full Bayesian answer
and the evidence procedure’s answer: |Ef(A | D) — Ef(A | v*,D)|. We will say that
“evidence works” if evidence’s error is small.

We can now formalize the intuition for when evidence works by writing down an upper
bound on evidence’s error:

Theorem 2: Evidence’s error < e+ 7(1 — p)+ Ef(A | ~v*, D) X |p|.

Proof: |Es(A | D) — J:j’g dy[Ef(A | v,D) x P(y | D)]| = ¢, by definition of €. By
the definition of 7, | [ ¥ dy[Ef(A |5, D)P(y | D)] — Ef(A|+*,D) [ 3} dvyP(v| D)| <
7 [} 4 dyP(y | D). Combining, |Es(A | D) — Ef(A | v%,D) [} dyP(y | D)| < e+
TfJ*j—g dyP(v | D). Therefore Ef(A|v*,D)—Ef(A| D) < e+1(l—p)+E;(A|~v*,D)xp.
QED.

One can find some sufliciency conditions for evidence to work in the literature. These
are specific to certain kinds of distributions, and are derived by evaluating the evidence
procedure’s answer and the exact answer and seeing if the two differ. Of course, if you can
evaluate the exact answer, there’s no need for an approximation like the evidence procedure
in the first place. In contrast, Theorem 2 provides us with some sets of sufficiency conditions
which don’t rely on evaluating the exact answer.

For example, if conditions (i’), (ii) and (iii) hold, and E¢(A | v*, D) is not too large, then
Theorem 2 tells us that evidence’s error is small. (We have no guarantees that it’s easy to
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evaluate whether those conditions hold, of course.) Intuitively, condition (iii) is what lets us
restrict attention to the region immediately surrounding the peak of P(vy | D). Condition
(ii) then tells us that Ef(A | v, D) doesn’t vary across that region, and can therefore be
evaluated at v = v* and pulled out of the integral. The overall error introduced by the
value of that remaining integral is reflected in the Ef(A | v*, D) X |p| term.

Note that this remaining error can be minimized either by having a sharp peak (p small)
or by having E¢(A | v*, D) - the guess of the evidence procedure - be close to zero. So we
don’t need to have condition (i’) hold (i.e., have P(y | D) peaked) for evidence to work.
(There are a number of other situations in which the evidence procedure can be justified
even though P(v | D) is not peaked; see [22].) On the other hand, in Section 1 we saw that
peaked P(v | D) does not guarantee the accuracy of the evidence procedure. Summarizing,
the evidence procedure sometimes works even when P(7y | D) isn’t peaked, and there are
also circumstances for which it doesn’t work despite P(v | D)’s being peaked.

All of this notwithstanding, when evidence works in practice usually condition (iii) is
met by having p small, with £¢(A | v, D) staying reasonably bounded for v outside of
[v*— 6,7* 4 6]. Formally, ¢ < B X p, so that conditions (i’) and (iv) give condition (iii). In
such scenarios, peakedness of P(y | D) does go hand in hand with evidence working.

5.3. Lower bounds on evidence’s error

We now turn to the issue of lower bounds on the error of the evidence procedure. Intuitively,
one might think that since v* is the “dominant contributing ~”, the evidence procedure
should work for peaked P(7 | D) in general. The problem is that one can just as easily argue
that the “dominant contributing v” for what we are interested in (namely Ef(A | D)) is
given by argmax, F (A, | D), not argmax, P(v | D). After all, E¢(A | D) is the y-integral
of E¢(A,v| D), not of P(y | D). This suggests that for evidence to work, v* must (nearly)
maximize E¢(A,v | D).

Indeed, recall that the intuitive justification of the evidence procedure outlined in equa-
tion (10) required that the peaks of E¢(A,v | D) and P(y | D) nearly coincide, lest 7 be
too large. This reasoning is formalized in the following theorem, which provides a lower
bound on 7 based on the peak separation, and which uses the A measure of peakedness.

Theorem 3: If E¢(A,v,D) does not have a y-peak somewhere within 6 of v*, then
r > Ey(A]7%D)(1- )/ A

Proof:By hypothesis E¢(A,~v*, D) has no local maximum in (y* — 6,7* + ¢). Therefore
we can’t have both E¢(A,v* —6,D) and E¢(A,v*+ 6, D) less than E¢(A,v*, D) . With-
out loss of generality, assume Ef(A,7*,D) < Ef(A,v*+4 6,D). Now examine the ratio
expectation values Ef(A | v*+ 6,D)/Es(A|~*, D), which we can write as the product of
ratios [P(v* | D)/ P(v*+ 6 | D)] x [Ef(A,v*+ 6,D)/Es(A,v*,D)]. By our assumption,
the second term in square brackets > 1. However by definition of A, the first term in square
brackets > 1/A. Therefore E¢(A | v* +6,D) > E¢(A | v*,D)/X, and the difference
Ef(A|v*4+6,D) — Ef(A|v*,D) > Ef(A|~*,D)x (A! = 1). Using the definition of T,
this means that E¢(A|~*, D) x (A\™! —1) < r. QED.

In terms of equation (1), large 7 means that around v = ~*, E¢(A | v, D) is not slowly
varying on the scale of the width of the peak of P(v | D). Recall though that if 7 is large,
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then the intuition behind the evidence procedure—that P(v | D) “picks out” E¢(A |+, D)
evaluated at v = y*—is faulty. Formally, if 7 is large Theorem 2 gives a weak upper bound.
And by Theorem 3 7 is always large if we have a wide separation between our peaks.

In fact, we can use distance between the peaks to give a lower bound on evidence’s
error, to go with the upper bound of Theorem 2. To do this, define I' as the magnitude of
the distance between v* and that y-maximum of F¢(A,v, D) which lies closest to v*.

Theorem 4: If E¢(A,v | D) is non-negative for all 7, it follows that evidence’s er-
ror > E¢(A | v*,D)x [I'P(v* | D)— 1]. Equivalently, it follows that evidence’s error
2 Ef(A[D)x[1 = (1 /TP~ |D))].

Proof: Since evidence’s error is non-negative, if I' = 0, the theorem trivially holds. If
I' > 0,~" isn’t a maximum of E¢(A,v,D). Accordingly, E¢(A,v, D) must either grow as
increases past v* or as it decreases below v*. (“Grow” here is taken to mean “stays level or
rises”.) Without loss of generality assume it grows as 7y increases past v*. Then the soonest
it could stop growing is at v = v* + I'. Therefore f7*+r dyEs(A,v,D) > T'Ef(A,~v*, D),
which implies that fJ:"'F dyEs(A,v | D) > T'Ef(A,v* | D). Recall our hypothesis that
E¢(A,v | D) is non-negative, which implies that Ef(A | D) = [dvEs(A,v | D) >
[73 4y Ey(A,y | D); By(A | D) > TEf(A,5" | D). So By(A| D)~ Eg(A | 77,D) >
Es(A | v*,D)x ['P(v* | D) — 1], which proves the first bound. Now define A as the
evidence’s error and use the fact that Es(A | v*,D) > E¢(A| D)— A to convert our lower
bound on Ef(A| D) to Ef(A| D) > I'P(v* | D) x [E¢(A| D) — Al]. Rearranging gives
the second bound. QED.

Theorem 4 shows why having the y-peaks far apart is bad for the evidence procedure.
However, Theorem 4 does not mean that a small separation between the peaks implies that
evidence works. Note that it is even possible for the magnitude of evidence’s error to be
small when the peaks are well separated; the overall multaplicative factor might be tiny.
However, even then, the peak separation must be small if one wants the proportional error
of the evidence procedure to be small.

Note that our two peaks are the maximizers over v of two very similar integrals:
Jdf'A(fYP(f',v, D)and [df' P(f',v, D). Accordingly, often if one can evaluate the peak of
the evidence, one can also evaluate the peak of Ef(A,~, D), and therefore one can evaluate
I'. So if one can use the evidence procedure, usually one can test its validity.

Example: Consider the case where the hyperparameter, 3, sets the noise level in an N-
dimensional Gaussian likelihood (see section 3). The joint probability distribution is given

by P(f,5,D) x P(f)P(ﬂ)ﬁ%e_ﬁwxrz, where x? = | f — D|? is the usual squared error term.
Solving for the (3-peak we obtain a relation which holds at the peak: 23x? = N—I—Qﬁ%.

For the usual case, where P([3) is either flat or the Jeffries prior, the last term in the
relation is small, either 0 or 2, respectively. Now assume that N is fairly large and that
P(Bey | D) & P(f|Bev, D) are as well. Theorem 4 then tells us that the only f’s for
which the evidence procedure’s approximation might be valid are those corresponding to
2B.,x% ~ N. For instance, if one reconstructs an image using the evidence procedure to
set the noise level and then finds that 2(3.,x? for the image of interest is not ~ N then the
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reconstruction is unjustified. A corollary to this is that it makes sense to skip the evidence
procedure entirely and use the -peak of P(f,(,D) instead of the peak of the evidence;
after all, if they aren’t close, then the evidence procedure is unjustified anyhow.
Naturally, this test also applies to the case where one has used the evidence procedure
to set a, a hyperparameter in a Gaussian conditional prior (c.f. Section 3). The analogous
relation that must be satisfied is, 2a.,x* ~ N, where one now takes x* = |f — f|2, the
squared error between f and the peak of the conditional prior, f An example (drawn from
the literature) of the evidence procedure failing to meet this criteria is shown in figure 2.

In some cases in fact, it’s easier to evaluate the peak of £¢(A,~, D) than it is to evaluate
the evidence peak (e.g., for the entropic prior - see [16]). In such circumstances, if one has
reason to believe that the evidence procedure is valid (so that I' must be small), it is easier
to evaluate ag, by finding the mode of E¢(A,v, D) than by finding the mode of P(y | D).

The need for the peaks to coincide can set strong restrictions on the restrictions on the
use of the evidence procedure. For example, take A(f') = é(f — f'), so that expectation
values of A are probabilities of f. Assume P(y | D) is quite peaked. Say we want to use
the evidence procedure to estimate Ef(A | D) = P(f| D) for some particular f, f. Then
Theorem 4 tells us that for evidence to work, if P( f | D) is non-negligible (or equivalently
the evidence procedure’s prediction P(f | v*, D) is non-negligible), then I' must be quite
small for f, i.e., the peak of P(f,’y, D)= P(D | f,*/)P(f | 7)P(7) must lie close to v* (as
measured on the scale of 1/P(7* | D)). Setting the peaks exactly equal gives us an equation
for f in terms of D (7* being a function of D). In general this equation will have a highly
restricted solution for f, F(D) (i.e., F(D) is a low-dimensional manifold in f-space). For
example, in the case of the entropic prior, (D) is a set of f all sharing the same entropy
(that entropy value being set by D). In our Gaussians case, FI(D) is a set of points all
sharing the same | f|? (where again the precise value is set by D - see Theorem 4 of [20]).

So for sufficiently peaked evidence, unless those f with non-negligible posterior all lie
in a highly restricted region (F(D)), the evidence procedure is guaranteed to have sizable
error for some f. Therefore for sufficiently peaked evidence, if the evidence procedure is to
correctly estimate the full posterior, that posterior must be highly peaked (i.e., its support
must be confined to a highly restricted region). This in turn usually implies that we’re in a
likelihood dominated regime - in which case there’s little reason to apply Bayesian analysis.

These effects can be envisioned with the help of figure 3. Recall that as N rises, the only
effect is that all (!) distributions (over both a and f) become more peaked; the shapes of
the distributions and in particular the positions of their peaks do not change. This means
that the curves in figure 3 get more peaked—but otherwise do not change—as the evidence
gets more peaked (cf. parts b and d of figure 3). Accordingly, as the evidence gets more
peaked, the set of f which both have non-zero posterior and which have their posterior
well approximated by the evidence procedure becomes tightly restricted. Indeed, that set
is empty in part d of figure 3. In fact, of the three §’s in figure 3, it is only for the 3 of
part ¢ that the “tightly restricted set of f” doesn’t quickly vanish with rising N. Yet it is
precisely that value of 8 in part ¢ that is the largest of those depicted in the figure. This
illustrates the fact that when the evidence procedure correctly estimates the full posterior
we have high 3, and that this effect becomes more pronounced as the evidence becomes
more peaked (i.e., as N rises). Rephrasing, things must be likelihood-dominated for the
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evidence procedure to work, especially when the evidence is peaked.
5.4. Other kinds of error

Finally, it is worth briefly discussing those scenarios where one isn’t directly concerned with
“evidence’s error” as defined heretofore. Most such scenarios have A(.) be a function of
[ as well as f’, so our expectation values are functions of f. (Recall that this is the case
when posterior expected A(.) is equivalent to the posterior probability of f, for example.).
To avoid confusion, in addressing these scenarios we will write expressions like Fg( Ay |
D) = [df'As(f")P(f' | D); since A(.) is a function of two arguments, the subscript on the
“E” is modified to indicate exactly which argument is being marginalized, and a subscript
is introduced onto the A(.) to indicate the remaining free variable.

For this kind of A(.) one might wish to measure the accuracy of the evidence procedure
over all f, rather than just at one particular f. One way to do this is to evaluate a
functional of the two functions Es( Ay | D) and Ep(Ag | v*, D). So for example we might
be interested in the least upper bound (over all f) of |Es( Ay | D)— Egq(Af | v, D)|. Since
Theorem 2 holds for any individual f, this least upper bound is bounded above by the
quantity maxs(€(f) + 7(f)(1 —p) + Ep(As | 7v*,D)|p|) (¢ and 7 have dependence on f
through their dependence on A(.)). This gives the largest possible gap (across f) between
the evidence approximation to the posterior and the correct posterior.

Arguments similar to this least upper bound (lub) one can be used to directly bound
Jdf|Ep(As | D) — Ep(As | 77, D)|. More generally, we can use a bound (however ar-
rived at) on lubs( |Eq(Af | D) — Ep(Af | 4%, D)] ) to get bounds on the L™ difference
between Eg(Af | D) and Ep(As | v, D) for any n. To illustrate this, consider the
case where A(f, f') = 6(f — f'), so that the expectation value we’re examining is the
posterior distribution of f. Define “L™(z(f) — y(f))” to mean the L™ difference between
z(f) and y(f). Let p be an upper bound on lubs( |P(f | D) — P(f | v*,D)|). Then
L(P(f| D)= P(f| 7%, D)) < o x [2/u]!/" [22).
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